

Feasibility for biocontrol of paper wasps

Bob Brown

brownb@landcareresearch.co.nz

Polistes in NZ

• P. humilis from 1880s

• P. chinensis from 1979

• P. dominula from 2013

• P. olivaceus (?) several sitings, failed to establish (Harris 1979)

Polistes vs Vespula: What is the difference?

Polistes	Vespula
Primitively eusocial	Eusocial
Sm to med colony size <500	L (to XXL)* colony ~3,000-4,000 * multi-season > 100,000
Open nest, above ground, <u>often on</u> <u>human structures</u>	Closed nest, in cavities, usually in ground
Generalist predators, nectar feeders	Generalist predators, scavengers, nectar feeders
Throughout NI, still spreading in SI	Throughout NZ

Impacts of *Polistes spp*

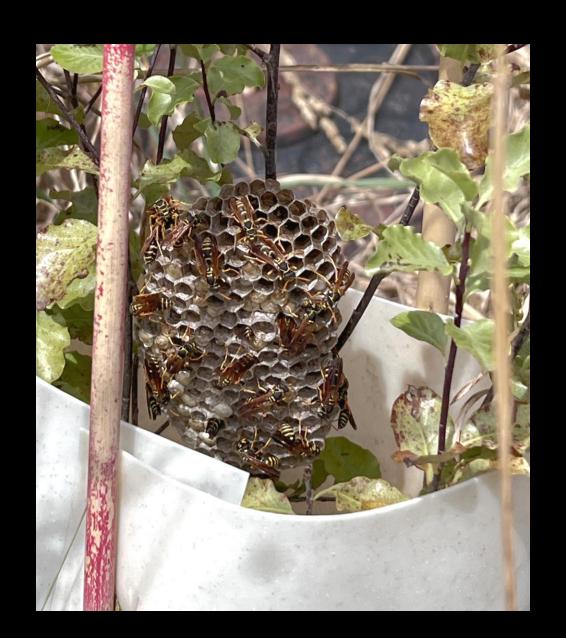
Human health

- Tendency to nest around human structures > increased risk of a stings
 - Severe allergic reaction known as anaphylactic shock, which can be fatal if not treated promptly
 - o most insect stings of Aucklanders 1992/93 survey (Dymock et al. 1994)

Environmental

Predation

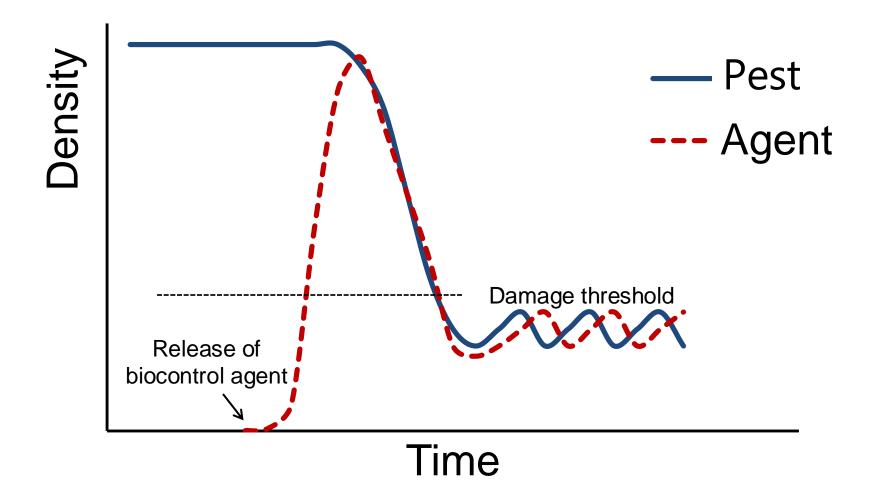
- Generalist predators: prey on a wide variety of arthropods, but usually prefer caterpillars (Leps.)
 (Clapperton 1999)
- Up to 200 nests/ha in Northland can remove ~1 kg of insect prey, per hectare, (Clapperton 1999)
- No native social wasps in NZ
 - Lack of co-evolution for defense, competition, etc


Economic/Environmental

- Known to prey on weed biocontrol agents (Paynter et al. 2019)
- May contribute to poor or slow establishment (Paynter et al. 2019)

Why are Polistes invasive in NZ?

- Life cycle
 - Long overwintering diapause
- Biology
 - Social, generalist predators
- NZ environment
 - Mild conditions
 - Honeydew!
- Open niche...no natives in this family
- No natural enemies



Why biological control?

- Limited control methods
 - Direct poisoning
 - Sweet bait trapping
- Polistes very well studied genus
 - Sociality (NA, SA, EU & Asia)
 - Colony dynamics
 - Natural enemies
 - Literature on parasitoids, predators, other
- Easy to observe
 - Nests can be approached safely for assessments
 - Better to involve citizen scientists
- Best use of funding

Target – biocontrol agent relationship

Nearest relatives of targets in NZ

VESPIDAE

Polistes chinensis (Fabricius, 1793) Polistes dominula (Christ 1791) Polistes humilis (Fabricius, 1781)

Vespula germanica (Fabricius, 1793) Vespula vulgaris (Linnaeus, 1758)

No native species in this <u>family</u>

Can we balance host specificity with increase of biotic resistance to new incursions?

The ability to attack multiple *Polistes* spp. could be particularly useful in New Zealand, where control of three *Polistes* spp. is currently needed.

Potential biocontrol agents

- Predators/parasitoids from several orders
 - Diptera
 - Tachinidae
 - Phoiridae
 - Sarcophagidae
 - Hymenoptera (at least 27spp)
 - Ichneumonidae
 - Chalcidae
 - o Eulophidae
 - o Plus!
 - Lepidoptera (11+ spp)
 - Crambidae
 - o Pyralidae
 - Tineidae
 - Strepsiptera (24+ spp)
 - Xenidae

Potential biocontrol agents

- Diptera
 - Anacamptmyia
 - Euvesporia
- Hymenoptera
 - Eulophidae
 - o *Elasmus* (4 spp)
 - E. schmitti found 8-43% of P. dominula nests (Rusina 2013)
 - Very wide host range within *Polistes* (10 spp)
 - Ichneumonidae
 - o *Latibulus* (5 spp)
 - Found on *P. dominula & P. chinensis*
 - wide host range within Polistes
 - Up to 80% nests parasitized, 1/3 had > 10% of cells infested (Rusina 2013)
 - o *Pachysomoides*
 - Very wide host range within *Polistes* (10 spp)

Potential biocontrol agents

- Lepidoptera
 - Crambidae
 - o Chalcoela
 - iphitalis
 - » wide host range within *Polistes* (10 spp)
 - » can be very damaging 40-73% (Strassmann 1981)
 - pegasalis
 - » wide host range within *Polistes* (9 spp)
 - » can be very damaging up to 50% of cells (Rau 1941)
- Strepsiptera
 - Xenidae
 - o Xenos
 - Can be very specific

Summary

- Many potential biocontrol options are available for further investigation
- NZ has no native Vespidae species
 - Host specificity at subfamily level could be viewed as a positive attribute
 - Balance host specificity with increase of biotic resistance to new incursions
 - Could be instrumental in slowing establishment of any new *Polistes* arrivals in New Zealand
- Classical BCAs capable of attacking multiple species of *Polistes*, might be more cost-effective than species specific to each *Polistes* species
- Ability to attack multiple *Polistes* spp. would not only be useful in New Zealand, but through the Pacific Islands, where *Polistes* spp. control is currently needed

Next steps

- Is there enough demand?
- Develop a biocontrol programme with a community
- Funding